jueves, 12 de mayo de 2016

HISTOGRAMA




En estadística, un histograma es una representación gráfica de una variable en forma de barras, donde la superficie de cada barra es proporcional a la frecuencia de los valores representados, ya sea en forma diferencial o acumulada. Sirven para obtener una "primera vista" general, o panorama, de la distribución de la población, o la muestra, respecto a una característica, cuantitativa y continua, de la misma y que es de interés para el observador (como la longitud o la masa). De esta manera ofrece una visión en grupo permitiendo observar una preferencia, o tendencia, por parte de la muestra o población por ubicarse hacia una determinada región de valores dentro del espectro de valores posibles (sean infinitos o no) que pueda adquirir la característica. Así pues, podemos evidenciar comportamientos, observar el grado de homogeneidad, acuerdo o concisión entre los valores de todas las partes que componen la población o la muestra, o, en contraposición, poder observar el grado de variabilidad, y por ende, la dispersión de todos los valores que toman las partes, también es posible no evidenciar ninguna tendencia y obtener que cada miembro de la población toma por su lado y adquiere un valor de la característica aleatoriamente sin mostrar ninguna preferencia o tendencia, entre otras cosas.
En general se utilizan para relacionar variables cuantitativas continuas, pero también se lo suele usar para variables cuantitativas discretas, en cuyo caso es común llamarlo diagrama de frecuencias y sus barras están separadas, esto es porque en el "x" ya no se representa un espectro continuo de valores, sino valores cuantitativos específicos como ocurre en un diagrama de barras cuando la característica que se representa es cualitativa o categórica. Su utilidad se hace más evidente cuando se cuenta con un gran número de datos cuantitativos y que se han agrupado en intervalos de clase.
Ejemplos de su uso es cuando se representan franjas de edades o altura de la muestra, y, por comodidad, sus valores se agrupan en clases, es decir, valores continuos. En los casos en los que los datos son cualitativos (no numéricos), como sexto grado de acuerdo o nivel de estudios, es preferible un diagrama de sectores.

Los histogramas son más frecuentes en ciencias sociales, humanas y económicas que en ciencias naturales y exactas. Y permite la comparación de los resultados de un proceso.

Tipos de histogramas

  • Diagramas de barras simples
Representa la frecuencia simple (absoluta o relativa) mediante la altura de la barra la cual es proporcional a la frecuencia simple de la categoría que representa.
  • Diagramas de barras compuesta
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, las cuales se representan así; la altura de la barra representa la frecuencia simple de las modalidades o categorías de la variable y esta altura es proporcional a la frecuencia simple de cada modalidad.
  • Diagramas de barras agrupadas
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, el cual es representado mediante un conjunto de barras como se clasifican respecto a las diferentes modalidades.
  • Polígono de frecuencias
Es un gráfico de líneas que de las frecuencias absolutas de los valores de una distribución en el cual la altura del punto asociado a un valor de las variables es proporcional a la frecuencia de dicho valor.
  • Ojiva porcentual
Es un gráfico acumulativo, el cual es muy útil cuando se quiere representar el rango porcentual de cada valor en una distribución de frecuencias.
En los gráficos las barras se encuentran juntas y en la tabla los números poseen en el primer miembro un corchete y en el segundo un paréntesis, por ejemplo: (10-20) aunque existen algunas otras.

Construcción de un histograma

Paso 1

Determinar el rango de los datos. Rango es igual al dato mayor menos el dato menor.
  • Paso 2
Obtener todos los números de clases, existen 2 criterios para determinar el número de clases (o barras) –por ejemplo, la regla de Sturges. Sin embargo ninguno de ellos es exacto. Algunos autores recomiendan de cinco a quince clases, dependiendo de cómo estén los datos y cuántos sean. Un criterio usado frecuentemente es que el número de clases debe ser aproximadamente a la raíz cuadrada del número de datos. Por ejemplo, la raíz cuadrada de 30 (número de artículos) es mayor que cinco, por lo que se seleccionan seis clases.
  • Paso 3
Establecer la longitud de clase: es igual al rango dividido por el número de clases.
  • Paso 4
Construir los intervalos de clases: Los intervalos resultan de dividir el rango de los datos en relación al resultado del PASO 2 en intervalos diferentes
  • Paso 5
Graficar el histograma: En caso de que las clases sean todas de la misma amplitud, se hace una gráfica de pastel, las bases de las barras son los intervalos de clases y la altura es la frecuencia de las clases. Si se unen los puntos medios de la base superior de los rectángulos se obtiene el polígono de frecuencias.

Ejemplos[editar]


El histograma de una imagen representa la frecuencia relativa de los niveles de gris de la imagen. Las técnicas de modificación del histograma de una imagen son útiles para aumentar el contraste de imágenes con histogramas muy concentrados. Sea una imagen de tamaño N×N, la función de distribución del histograma es:
Fu(l)=(\mbox{Numero de pixels } (i,j)\mbox{ tales que } u(i,j)\leq l)/N^2

Otros tipos de representaciones gráficas[editar]

Hay histogramas donde se agrupan los datos en clases, y se cuenta cuántas observaciones (frecuencia absoluta) hay en cada una de ellas. En algunas variables (variables cualitativas) las clases están definidas de modo natural, por ejemplo, sexo con dos clases: mujer, varón o grupo sanguíneo con cuatro: A, B, AB, O. En las variables cuantitativas, las clases hay que definir las explícita mente (intervalos de clase). Se representan los intervalos de clase en el eje de abscisas (eje horizontal) y las frecuencias, absolutas o relativas, en el de ordenadas (eje vertical).
A veces es más útil representar las frecuencias acumuladas, o representar simultáneamente los histogramas de una variable en dos situaciones distintas.
Otra forma muy frecuente, de representar dos histogramas de la misma variable en dos situaciones distintas.
En las variables cuantitativas o en las cualitativas ordinales se pueden representar polígonos de frecuencia en lugar de histogramas, cuando se representa la frecuencia acumulativa, se denomina ojiva.













7 comentarios:

  1. ME GUSTO MUCHO TU TRABAJO, SIGUE SUBIENDO INFORMACION.

    ResponderBorrar
  2. ME GUSTO MUCHO TU TRABAJO, SIGUE SUBIENDO INFORMACION.

    ResponderBorrar
  3. buena información los ejemplos son muy claros y el vídeo es muy bueno

    ResponderBorrar
  4. tu trabajo es bueno sigue mejorando tublog

    ResponderBorrar
  5. Muy buen trabajo, solo faltan un poco mas de imágenes.

    ResponderBorrar
  6. Esta muy bien estructurada tu informacion y bastante clara.

    ResponderBorrar
  7. Esta muy bien estructurada tu informacion y bastante clara.

    ResponderBorrar